» » Структура океана

Структура океана

Геосинклинальная теория и гипотеза океанизации земной коры
Тектоническая мысль в первые послевоенные десятилетия развивалась в рамках геосинклинальной теории, основы которой были заложены еще в XIX в. Дж. Дэна и Г. Огом и существенно обогащены в XX столетии сначала Г. Штилле, а затем Н. С. Шатским, В. В. Белоусо-вым, В. Е. Хаиным, А. В. Пейве и другими учеными. Геосинклинальный режим развития земной коры, как Считает член-корреспондент АН СССР В. В. Белоусов, «характеризуется глыбово-волновыми колебательными движениями, интенсивными складчатыми и разрывными дислокациями, напряженной магматической деятельностью, проявлением регионального метаморфизма и гранитизации». Иначе говоря, геосинклиналь — это область земной коры, которая на определенном промежутке времени становится ареной наиболее ярких и драматических геологических событий: проявлений магматизма, вулканических извержений, интенсивного накопления осадков, наконец, горообразования, сопровождающегося складчатостью, Завершение геосинклинального развития земной коры символизирует переход к спокойной, платформенной стадии ее эволюции. По времени отмирания геосинклинального режима датируется возраст фундамента в пределах кратонов на континентах, а события, с которыми связаны интенсивные и широкомасштабные складчатые дислокации, протекавшие при замыкании геосинклиналей, получили собственные названия: гренвильская, байкальская, каледонская, герцинская, киммерийская и альпийская складчатость. Из сказанного следует, что геосинклинальная теория — это концепция, объясняющая становление вемной коры континентов. Она, безусловно, внесла огромный вклад в понимание последовательности тектонических и общегеологических событий в истории нашей планеты. На определенном этапе развития геологического мышления она сыграла важнейшую роль. В то же время геосинклинальная теория почти совершенно обходила молчанием океанический сектор стратисферы, хотя такие понятия, как морской режим осадко накопления, подводный магматизм и вулканизм, постоянг но фигурируют в описаниях истории эволюции различных геосинклиналей. А эти последние отнюдь не были одинаковыми: в одних важнейшее место занимали миогео-синклинали, в других развитие шло через так называемую эвгеосинклиналь. Остановимся на этих понятиях, впервые введенных Г. Штилле, подробнее. Под миогеосинклинальной зоной понимается та часть геосинклинали, где геологические события протекают в общем неспешно, неярко и довольно последовательно. Здесь накапливаются преимущественно прибрежные и мелководно-морские осадки. Их мощности, однако, выше, чем на соседних участках кратонов. Отсутствуют или очень редки вулканические проявления, а складчатые деформации, которыми завершается геосинклинальный режим, выражены сравнительно слабо и в простых формах. Иное дело эвгеосинклиналь. Для нее характерна подводная магматическая деятельность в форме главным образом излияний базальтовых лав. С ней был связан интенсивный вулканизм. Здесь же формировались мощнейшие комплексы глубоководных осадков специфического строения (флишевые формации). Эта часть геосинклинали отличалась непоследовательным, прерывистым ходом и темпом развития, разобщенностью и сложным мозаичным расположением основных структур, зачастую оторванных от своих корней (в том залегании, в котором мы их находим в настоящее время). Наконец, здесь наблюдаются наиболее сложные и запутанные формы тектонических деформаций, свидетельствующие о срыве гигантских масс пород, их окучивании и перемещении на значительные расстояния. Странное дело, но магия условных терминов в течение десятилетий не давала увидеть многим тектонистам и битологам, изучавшим древние геосинклинальные пояса, простую истину. Нарисованная ими по результатам проведенных исследований картина отражает (если убрать все те изменения, которые были наложены последующей складчатостью и другими позднейшими процессами в недрах) строение современных зон перехода от континента к океану, а иногда и самого океана. Поставив знак равенства или по крайней мере подобия между геосинклиналью и переходной зоной континент—океан, сразу раскрываешь смысл громоздких и труднопроизносимых слов: миогеосинклиналь — это шельф и Прилегающий к нему континентальный склон, иначе говоря, край континента, где господствовал пассивный тектонический режим; эвгеосинклиналь — подножие континентального склона и прилегающая часть глубоководной котловины, зачастую Ограниченная со стороны океана островной вулканической дугой. Несмотря на логичность и, можно даже сказать, очевидность подобного сопоставления, многие геологи и сейчас упорно не желают признавать это, цепляясь за отжившие термины и придумывая невероятные сценарии геологических событий для объяснения истории развития того или иного региона. К разбору. геосинклинальной теории с современных, актуалистических позиций мы вернемся позднее, когда познакомимся со строением океана. Здесь же следует отметить, что эта теория родилась в период, когда отсутствовали какие-либо достоверные сведения о структуре большей части поверхности Земли, поэтому в ней не нашлось места океану и переходной между ним и континентами области. Геосинклинальная теория, лишь объяснявшая эволюцию континентального сектора стратисферы, в общем довольно успешно справилась с этой задачей. Более того, она создала основу для развития палеоокеанологии, ибо недра бывших геосинклинальных поясов хранят тайны океанов прошлого. Поскольку геология развивалась как сугубо земная наука, то и целью ее было решение прикладных задач на континентах. Господствовавшие в ней теории долгое время обходили молчанием вопросы строения и происхождения океана: континенты как бы плавали в неизвестной и в чем-то даже враждебной среде, которая не только не оказывала никакого влияния на эволюцию континентальных мегаблоков, но и существовала сама по себе. Эта ситуация смущала многих ведущих теоретиков науки и заставляла их искать место океанам в глобальной схеме эволюции Земли или по крайней мере объяснить их появление на нашей планете. Некоторые ученые поступали довольно просто: они продолжали в океан выделяемые на континентах структуры. Погрузив участки кратонов и горно-складчатых поясов на абиссальное дно, они выводили их на поверхность у берегов противолежащих континентов, стараясь создать единую схему распространения известных на континентах образований. Несмотря на полную недостоверность и непроверяемость в те времена подобных построений, последние получали одобрение, так как при этом достигалась нужная цель: океаны как бы исчезали, становясь простыми придатками континентов. Концы, так сказать, были спрятаны в воду. Эта традиция выводить океан из континента породила еще одну теорию — океанизации (базификации) континентальной коры, которую выдвинул в начале 50-х годов нашего столетия В. В. Белоусов. Согласно этой концепции, континентальная кора, сложившаяся повсеместно еще на ранних этапах развития нашей планеты, в дальнейшем частично превратилась в современную мощную кору континентов, частично же (в конце палеозоя — начале мезозоя) трансформировалась до коры океанической. Образование континентальной литосферы, согласно этой теории, первоначально связано с гравитационной дифференциацией первичного вещества Земли, т. е. с подъемом в верхние оболочки более легких компонентов. Они и составили земную кору и верхнюю мантию планеты, в то время как тяжелые компоненты опустились вниз, сконцентрировавшись в ядре. В процессе этой гравитационной дифференциации выделяется тепловая энергия, приведшая на определенном этапе к плавлению мантии и всплыванию ультраосновных составляющих. Внедрение их в земную кору с одновременным удалением из нее воды, кремнезема и щелочей способствовало повышению плотности литосферы до 3 г/см3, а в дальнейшем и до 3,4—3,5 г/см3. В результате утяжеления континентальная кора начинала как бы тонуть в мантии, а на ее место поднимался ультраосновной и основной материал. Излияния магм основного состава приводили в конечном итоге к формированию базальтового слоя, а находившиеся под ним остатки бывшей континентальной коры расплавлялись и исчезали. Таков в общих чертах механизм «базификации» континентальной коры, в результате которой на нашей планете, по мысли В. В. Белоусова, появились океаны. Эта гипотеза, преобразованная ее автором в 70-х годах в учение об эндогенных режимах, не нашла своего подтверждения, так как в процессе глубоководного бурения в океанах не было обнаружено следов погруженной и переработанной континентальной коры. Исключение, пожалуй, составляют районы подножий на пассивных материковых окраинах в Атлантическом и Индийском океанах. Здесь при фрагментации и расколе Пангеи и Гонд-ваны отдельные блоки континентальной коры были погребены под базальтами и мощной толщей осадков и, возможно, утратили связь друг с другом. Эти зоны утонения и разрыва древней континентальной литосферы являются единственными, хотя и не вполне очевидными примерами «океанизации».
Структура океана
Итак, каждый рейс «Гломара Челленджера» все шире приоткрывал завесу над тайнами океана. Постепенно начинала вырисовываться структура океанского дна, совершенно непохожая на ту, какой ее себе представляли геологи, работавшие на континентах. Здесь нужны были новые исследования. Однако главное можно было считать установленным: дно океана было повсеместно молодым. Ведь даже в периферийных районах Атлантического и Тихого океанов в основании осадочного чехла бур «Гломара Челленджера» вскрыл отложения не старше мелового и позднеюрского возраста. Последние залегали на базальтах фундамента, Которые сформировались практически в то же время. Таким образом, возраст океанского ложа не превышал 150—180 млн лет. Это ничтожно мало по сравнению с докембрийским возрастом пород, слагающих фундамент кратонов на континентах и выступающих на поверхность в пределах Балтийского, Канадского, Бразильского, Анабарского и других щитов: 1—2 млрд лет для протерозойских и 3—3,5 млрд лет для архейских образований. Молодость фундамента в океанах можно было объяснить лишь его спредингом — формированием в рифтовых зонах срединно-океанических хребтов. Однако поговорим вначале о строении самой океанической коры. Океаническая и континентальная кора: антиподы или разные стадии развития литосферы? После того как в 1949 г. впервые были измерены скорости распространения сейсмических волн в породах ложа океана, стало ясно, что скоростные разрезы коры континентов и океанов весьма различны. На небольшой глубине от дна, в фундаменте под абиссальной котловиной, эти скорости достигали величин, которые на материках фиксировались в самых глубоких слоях земной коры. Вскоре выяснилась причина подобного несоответствия. Дело в том, что кора океанов оказалась поразительно тонкой. Если на континентах толщина земной коры составляет в среднем 35 км, а под горно-складчатыми системами даже 60 и 70 км, то в океане она не превышает 5—10, редко 15 км, а в отдельных районах мантия находится почти у самого дна. Стандартный скоростной разрез континентальной коры включает верхний, осадочный слой со скоростью продольных волн 1—4 км/с, промежуточный, «гранитный» — 5,5—6,2 км/с и нижний, базальтовый — 6,1 — 7,4 км/с. Ниже, как полагают, залегает так называемый перидотитовый слой, входящий уже в состав астеносферы, со скоростями 7,8—8,2 км/с. Названия слоев носят условный характер, так как реальные сплошные разрезы континентальной коры никто до сих пор не видел, хотя Кольская сверхглубокая скважина проникла в глубь Балтийского щита уже на 12 км. В абиссальных котловинах океана под тонким осадочным плащом (0,5—1,5 км), где скорости сейсмических волн не превышают 2,5 км/с, находится второй слой океанической коры. По данным американского геофизика Дж. Уорзела и других ученых, он отличается удивительно близкими значениями скорости — 4,93—5,23 км/с, в среднем 5,12 км/с, а средняя мощность под ложем океанов равна 1,68 км (в Атлантическом — 2,28, в Тихом — 1,26 км). Впрочем, в периферийных частях абиссали, ближе к окраинам континентов, мощности второго слоя довольно резко увеличиваются. Под этим слоем выделяется третий слой коры с не менее однородными скоростями распространения продольных сейсмических волн, равными 6,7 км/с. Его толщина колеблется от 4,5 до 5,5 км. В последние годы выяснилось, что для скоростных разрезов океанической коры характерен больший разброс значений, чем это предполагалось ранее, что, по-видимому, связано с глубинными неоднородностями, существующими в ней. Как видим, скорости прохождения продольных сейсмических волн в верхних (первом и втором) слоях континентальной и океанической коры существенно различны. Что касается осадочного чехла, то это обусловлено преобладанием в его составе на континентах древних образований мезозойского, палеозойского и докембрийского возраста, претерпевших довольно сложные преобразования в недрах. Дно же океана, как говорилось выше, относительно молодо, и осадки, лежащие над базальтами фундамента, слабо уплотнены. Это связано с действием целого ряда факторов, определяющих эффект недоуплотнения, который известен как парадокс глубоководного диагенеза. Сложнее объяснить разницу в скоростях сейсмических волн при их распространении через второй («гранитный») слой континентальной и второй (базальтовый) слой океанической коры. Как ни странно, в базальтовом слое океана эти скорости оказались ниже (4,82— 5,23 км/с), чем в «гранитном» (5,5—6,2 км/с). Дело тут в том, что скорости продольных сейсмических волн в кристаллических породах с плотностью 2,9 г/см3 приближаются к 5,5 км/с. Отсюда вытекает, что если «гранитный» слой на континентах действительно сложен кристаллическими породами, среди которых преобладают метаморфические образования нижних ступеней трансформации (по данным сверхглубокого бурения на Кольском полуострове), то в составе второго слоя океанической коры, помимо базальтов, должны участвовать образования с плотностью меньшей, чем у кристаллических пород (2—2,55 г/ем3). Действительно, в 37-м рейсе бурового судна «Гломар Челленджер» были вскрыты породы океанического фундамента. Бур проник сквозь несколько базальтовых покровов, между которыми находились горизонты карбонатных пелагических осадков. В одной из скважин была пройдена 80-метровая толща базальтов с прослоями известняков, в другой — 300-метровая серия пород вулканогенно-осадочного происхождения. Бурение первой из перечисленных скважин было остановлено в ультраосновных породах — габбро и гипербазитах, которые, вероятно, уже относятся к третьему слою океанической коры. Глубоководное бурение и исследование рифтовых зон с подводных обитаемых аппаратов (ПОА) позволили выяснить в общих чертах структуру океанической коры. Правда, нельзя с уверенностью утверждать, что нам известен полный и непрерывный ее разрез, не искаженный последующими наложенными процессами. Наиболее детально изучен в настоящее время верхний, осадочный слой, вскрытый частично или полностью почти в 1000 точках дна буром «Гломара Челленджера» я «Джойдес Резолюшн». Гораздо менее исследован второй слой океанической коры, который вскрыт на ту или иную глубину гораздо меньшим числом скважин (несколькими десятками). Однако сейчас очевидно, что этот слой сформирован в основном лавовыми покровами базальтов, между которыми заключены разнообразные осадочные образования небольшой мощности. Базальты относятся к толеитовым разностям, возникшим в подводных условиях. Это подушечные лавы, сложенные зачастую пустотелыми лавовыми трубами и подушками. Находящиеся между базальтами осадки в центральных частях океана состоят из остатков мельчайших планктонных организмов с карбонатной или кремнистой функцией. Наконец, третий слой океанической коры отождествляют с так называемым дайковым поясом — сериями небольших магматических тел (интрузий), тесно пригнанных одно к другому. Состав этих интрузий основной в ультраосновной. Это габбро и гипербазиты, формировавшиеся не при излиянии магм на поверхности дна, как базальты второго слоя, а в недрах самой коры. Иначе говоря, речь идет о магматических расплавах, которые застыли вблизи магматического очага, так и не достигнув поверхности дна. Их более «тяжелый» ультраосновной состав свидетельствует об остаточном характере этих магматических расплавов. Если же вспомнить, что толщина третьего слоя обычно в 3 раза превышает мощность второго слоя океанической коры, то определение ее как базальтовой может показаться большим преувеличением. Подобно этому и «гранитный» слой континентальной коры, как выяснилось в процессе бурения Кольской сверхглубокой скважины, оказался вовсе не гранитным, по крайней мере в верхней его половине. Как уже говорилось выше, в пройденном здесь разрезе преобладали метаморфические породы низших и средних ступеней преобразования. В большинстве своем они являются измененными при высоких температурах и давлении, существующих в недрах Земли, древними осадочными породами. В этой связи сложилась парадоксальная ситуация, заключающаяся в том, что мы теперь больше знаем о коре океанической, чем о континентальной. И это при том, что первая изучается интенсивно от силы два десятилетия, тогда как вторая — объект исследований по крайней мере полутора столетий. Обе разновидности земной коры не являются антагонистами. В краевых частях молодых океанов, Атлантического и Индийского, граница между континентальной в океанической корой несколько «размыта» за счет постепенного утонения первой из них в области перехода от континента к океану. Эта граница в целом тектонически спокойна, т. е. не проявляет себя ни мощными сейсмическими толчками, которые случаются здесь крайне редко, ни вулканическими извержениями. Однако такое положение сохраняется не везде. В Тихом океане граница между континентальной и океанической корой относится, пожалуй, к самым драматическим рубежам раздела на нашей планете. Так что же все-таки, эти две разновидности земной коры — антиподы или нет? Думается, что мы можем с полным основанием считать их таковыми. Ведь несмотря на существование целого ряда гипотез, предполагающих океанизацию континентальной коры или, напротив, превращение океанического субстрата в континентальный за счет целого ряда минеральных трансформаций базальтов, на самом деле доказательств непосредственного перехода одного типа коры в другой нет. Как будет показано ниже, континентальная кора формируется в специфических тектонических обстановках в активных зонах перехода между материком и океаном и в основном в результате преобразования другой разновидности земной коры, называемой субокеанической. Океанический субстрат исчезает в зонах Беньофа, либо выдавливается как ласта из тюбика, на край континента, либо превращается в тектонический меланж (крошево из перетертых пород) в областях «захлопывания» океанов. Впрочем, об этом позднее.

Комментарии к статье:

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем




Новое на сайте


Леса юга Сибири и современное изменение климата


По данным информационной системы «Биам» построена ординация зональных категорий растительного покрова юга Сибири на осях теплообеспеченности и континентальности. Оценено изменение климата, произошедшее с конца 1960-х по 2007 г. Показано, что оно может вести к трансформации состава потенциальной лесной растительности в ряде регионов. Обсуждаются прогнозируемые и наблюдаемые варианты долговременных сукцессии в разных секторно-зональных классах подтайги и лесостепи.


Каждая популяция существует в определенном месте, где сочетаются те или иные абиотические и биотические факторы. Если она известна, то существует вероятность найти в данном биотопе именно такую популяцию. Но каждая популяция может быть охарактеризована еще и ее экологической нишей. Экологическая ниша характеризует степень биологической специализации данного вида. Термин "экологическая ниша" был впервые употреблен американцем Д. Гриндель в 1917 г.


Экосистемы являются основными структурными единицами, составляющих биосферу. Поэтому понятие о экосистемы чрезвычайно важно для анализа всего многообразия экологических явлений. Изучение экосистем позволило ответить на вопрос о единстве и целостности живого на нашей планете. Выявления энергетических взаимосвязей, которые происходят в экосистеме, позволяющие оценить ее производительность в целом и отдельных компонентов, что особенно актуально при конструировании искусственных систем.


В 1884 г. французский химик А. Ле Шателье сформулировал принцип (впоследствии он получил имя ученого), согласно которому любые внешние воздействия, выводящие систему из состояния равновесия, вызывают в этой системе процессы, пытаются ослабить внешнее воздействие и вернуть систему в исходное равновесное состояние. Сначала считалось, что принцип Ле Шателье можно применять к простым физических и химических систем. Дальнейшие исследования показали возможность применения принципа Ле Шателье и в таких крупных систем, как популяции, экосистемы, а также к биосфере.


Тундры


Экосистемы тундр размещаются главным образом в Северном полушарии, на Евро-Азиатском и Северо-Американском континентах в районах, граничащих с Северным Ледовитым океаном. Общая площадь, занимаемая экосистемы тундр и лесотундры в мире, равно 7 млн ​​км2 (4,7% площади суши). Средняя суточная температура выше 0 ° С наблюдается в течение 55-118 суток в год. Вегетационный период начинается в июне и заканчивается в сентябре.


Тайгой называют булавочные леса, широкой полосой простираются на Евро-Азиатском и Северо-Американской континентах югу от лесотундры. Экосистемы тайги занимают 13400000 км2, что составляет 10% поверхности суши или 1 / 3 всей лесопокрытой территории Земного шара.
Для экосистем тайги характерна холодная зима, хотя лето достаточно теплое и продолжительное. Сумма активных температур в тайге составляет 1200-2200. Зимние морозы достигают до -30 ° -40 °С.


Экосистемы этого вида распространены на юге от зоны тайги. Они охватывают почти всю Европу, простираются более или менее широкой полосой в Евразии, хорошо выраженные в Китае. Есть леса такого типа и в Америке. Климатические условия в зоне лиственных лесов более мягкие, чем в зоне тайги. Зимний период длится не более 4-6 месяцев, лето теплое. В год выпадает 700-1500 мм осадков. Почвы подзолистые. Листовой опад достигает 2-10 тонн / га в год. Он активно вовлекается в гумификации и минерализации.


Тропические дождевые леса - джунгли - формируются в условиях достаточно влажного и жаркого климата. Сезонность здесь не выражена и времени года распознаются по дождливым и относительно сухим периодами. Среднемесячная температура круглогодично держится на уровне 24 ° - 26 ° С и не опускается ниже плюс восемнадцатого С. Осадков выпадает в пределах 1800-2000 мм в год. Относительная влажность воздуха обычно превышает 90%. Тропические дождевые леса занимают площадь, равную 10 млн. кв. км.