Самым загадочным образованием в системе сложнопостроенных переходных зон, или, как их еще называют, островодужных окраин, остается, несомненно, островная вулканическая дуга. В морфологическом отношении это цепочка более или менее крупных островов-вулканов, покоящихся на едином разросшемся цоколе. Острова обычно разделены довольно глубокими проливами. В структурном отношении дуга распадается на следующие части: подводное аккреционное поднятие, склон которого, обращенный к океану, образует внутренний борт глубоководного желоба; островное сооружение или собственно дуга, включающая также островной шельф и часть подводного склона; молодые вулканические постройки — конусы действующих или недавно потухших вулканов, среди которых есть и подводные. Последнюю цепь называют еще третьей дугой. Она находится на границе е впадиной окраинного моря, а напластования лав и вулканитов, образующих внутренний склон островной дуги, являются одновременно внешним бортом этой впадины. На этом крутом борту осадки удерживаются только в отдельных карманах и западинах рельефа. Напротив, внешний склон дуги и островная отмель, обращенная к океану, как правило, сложены довольно мощной толщей осадков вулканического и биогенного (карбонатные и кремнистые породы) происхождения. Собственно вулканические конусы занимают довольно скромное по объему место на островной дуге. Это высокие постройки с неширокими основаниями, что резко отличает их от вулканов центральноокеанических хребтов. Дело в том, что островные дуги — зоны андезитового и андезитово-базальтового вулканизма, т. е. его продукты имеют средний состав. Это определяет тип магматических расплавов, поднимающихся к поверхности, и резко выраженный эксплозивный характер вулканизма островных дуг. Извержения, сопровождающиеся выбросами пепла и камней, здесь случаются чаще, чем излияния лав. Наблюдались и такие явления, как образование палящих туч и лахаров, а иногда и взрывы самих вулканических конусов (вспомним взрыв вулкана Кракатау). В отличие от самой дуги, сложенной вулканическими комплексами пород, а в подводной части отложениями биогенного и вулканогенного генезиса, асейсмичный хребет образован породами, в большинстве своем чуждыми островной дуге. В их составе наиболее часто встречаются образования чисто океанического происхождения, в том числе реликты океанической коры, входящие в офиолитовую ассоциацию. Это базальты, гиалокластиты, габбро, а также ультрамафиты, которые, как полагают, отражают состав и строение подко-ровых слоев литосферы, а возможно, и мантии Земли. Драгировки, осуществленные во фронтальной части островных дуг, например на хребте Лау (юго-западная часть Тихого океана), позволили достать с глубины 4—5 км, т. е. уже в пределах внутреннего борта глубоководного желоба, уникальные образцы, отвечающие по составу многим из перечисленных выше типам пород. Но как они появились в составе островной вулканической дуги? Исследование многих геофизических особенностей асейсмичных хребтов дало возможность разработать модель их строения и происхождения. В самом названии этих хребтов содержится одно из удивительных их свойств — пассивный характер в очень активном с тектонической точки зрения районе. С аккреционными поднятиями не связаны ни вулканические извержения, ни глубинные проявления магматизма, ни сейсмическая активность, хотя рядом находится дуга, сотрясаемая катаклизмами. Интересны и такие особенности асейсмичных хребтов, как отрицательные аномалии силы тяжести и низкие значения теплового потока, свидетельствующие об удаленности от поверхности астеносферных и мантийных масс вещества. Наконец, в составе осадочных пород, слагающих асейсмичный хребет, оказалось много турбидитов — отложений, формирующихся либо у основания островного склона, либо в глубоководном желобе. Набор компонентов в составе турбидитов свидетельствует об одном: они возникли в глубоководном желобе и сложены обломками пород, снесенными с самой дуги. Во многих районах асейсмичный хребет настолько разросся, что его гребень достигает поверхности океана,и даже выступает над ней в виде цепочки островов (южная ветвь Курильской дуги). Подобное же происхождение имеет остров Барбадос, находящийся в составе Малой Антильской дуги (Карибское море). Поэтому породы аккреционного хребта можно изучать, не погружаясь в морские пучины.Объяснить появление турбидитов и других отложений глубоководного генезиса у поверхности океана удалось только с помощью механизма- аккреции пород. Для того чтобы понять, как действует этот механизм, необходимо напомнить о существовании зоны Беньофа — сейсмофокальной поверхности, вдоль которой концентрируются фокусы (очаги) большинства землетрясений, происходящих в районе островных дуг. Выше уже говорилось, что они порождены поддвигом океанической коры под тело дуги с последующим ее расплавлением на глубинах 600— 700 км. Так вот, в процессе этого поддвига не вся плита уходит в мантию. Уже в самом начале погружения с нее сдираются верхние, мягкие слои, главным образом осадочные образования и часть базальтов второго слоя. Вместе с осадками океанического происхождения в зоны субдукции заталкиваются осадки гравитационной природы, в том числе и турбидиты, скапливающиеся в глубоководном желобе. Сюда они попадают с островного склона по системам подводных ложбин и каньонов. В условиях гигантских напряжений, которые обусловлены трением погружающейся и перекрывающей пластин, осадки сдираются с нижней пластины и «налипают» на верхнюю в виде отдельных чешуи. Из этих чешуи и построен асей-смичный хребет, козырьком накрывающий верхнюю часть зоны Беньофа. Если океаническая плита покрыта мощной толщей осадков или если в глубоководный желоб мутьевыми потоками сбрасывается с дуги огромное количество осадочного материала, то «козырек» быстро разрастается, а его вершина возвышается над водой. При этом ранее возникшие чешуи оказываются наверху, а более молодые подпирают их снизу. В результате у поверхности можно обнаружить глубоководные отложения, образовавшиеся когда-то на глубинах 5—8 км. Реальность этого механизма подтверждается тем, что породы, слагающие асейсмичный хребет, несут следы воздействия огромных давлений. Этот тип метаморфизма в отличие от метаморфизма высоких температур приводит к формированию совершенно особого комплекса минералов. А теперь вспомним заголовок раздела. Казалось бы, какая может быть связь между островной вулканической дугой, выдвинутой на сотни и тысячи километров в океан, и континентальной корой? И тем не менее она существует. На островных вулканических дугах возникает молодая континентальная кора за счет разрушения старой коры океана и выплавления из нее наиболее легких ингредиентов. Последние в форме магматических расплавов среднего, а также кислого состава поднимаются от зоны Беньофа к поверхности. И если в первые фазы развития дуги эти расплавы изливаются или выбрасываются тучами раскаленного пепла, то на стадии затухания ее активности они уже не доходят до поверхности и застывают на глубине, давая начало интрузивным комплексам пород. Впоследствии начинается гранитизация как интрузивных комплексов, так и вулканических пород, которыми сложены основание конуса вулкана и большая часть дуги. Так зарождаются гранитные «ядра». Вокруг них в дальнейшем формируется гранитный слой континентальной коры. По прошествии многих миллионов лет островная дуга прицепляется к краю материка. Таков вероятный механизм его постепенного разрастания во времени.
19 ноября 1929 г. произошло экстраординарное событие: в течение короткого времени между Северной Америкой и Европой прекратилась телефонная и телеграфная связь. Она обеспечивалась системой подводных кабелей, трассы которых пролегали через континентальный склон в районе Большой Ньюфаундлендской банки. Проведенное обследование показало, что кабели были порваны. Поскольку одновременно с нарушением связи сейсмические станции на континенте зафиксировали в этом районе небольшое землетрясение, всю ответственность за случившееся возложили на него. Однако вскоре выявилась любопытная подробность: связь по различным каналам прекратилась не одновременно, а с интервалами, причем первыми были порваны кабели, проложенные на меньших глубинах, последними же — на больших. В 60-х годах, когда появились надежные средства исследования океанского дна, была найдена разгадка тех событий. Выяснилось, что в результате подземного толчка с края шельфа Большой Ньюфаундлендской банки на склон хлынули огромные массы рыхлого песка, образовавшие подводный суспензионный поток типа селевого. Ударной силы его оказалось достаточно, чтобы порвать подводные кабели, проложенные в различных частях склона. Подняв старые документы, американские геологи Ф. Шепард и Р. Дилл по времени прекращения связи рассчитали, что скорость подводной лавины достигала 30 км/ч. Для подводных условий это не так уж мало, если учесть, что вместе с лавиной на континентальное подножие переместилась масса осадков огромного объема. Подобные суспензионные потоки, представляющие собой смесь осадочного материала с водой, отличаются значительной плотностью; они называются масс-флоу (по англ. «флоу»— поток). Пастообразные потоки, или потоки обломков, обусловлены течением вниз по склону вязких масс глинистого или карбонатно-глинистого ила, также обладающих высокой плотностью. Эти потоки напоминают сели, хотя и двигаются под водой несравненно медленнее. Они увлекают вместе с собой все попадающиеся на пути обломки, вплоть до гальки и валунов, и способны достигать больших глубин. Так, один из них был закартирован геофизическими методами при исследовании атлантической окраины США на глубинах 4500—5000 м. Потоки обломочного материала все же не приводят к таким грандиозным перемещениям осадков, которые связаны с другими, более масштабными явлениями, например с гигантскими подводными оползнями. Об истинных масштабах последних стало известно только после того, как началась планомерная сейсмоакустическая съемка континентальных склонов и подножий. В результате на континентальных окраинах в Северной Атлантике были обнаружены подводные гряды оползневого происхождения высотой до 1000 м и протяженностью в десятки и сотни километров. Один из таких оползневых фронтов прослеживается к югу от мыса Хаттерас (атлантическая окраина США) в средней части континентального склона почти на 100 км. Многочисленные оползни покрывают склон и верхнюю часть подножия черноморской окраины Кавказа. Как показывает изучение колонок поднятых осадков, один оползень обычно покоится здесь на другом, а общее число мелких оползней в одном небольшом разрезе, длиной 3—4 м, может достигать 8 или 10. На сейсмопрофилях нередко видно совершенно хаотическое залегание отдельных массивов осадков, съехавших по склону и образовавших грядовый рельеф. При исследовании тихоокеанского склона Камчатки в одном из подводных каньонов с помощью сейсмоакустики (НСП) была обнаружена огромная глыба древних пород, оторвавшаяся от коренного субстрата (видимо, от края шельфа) и перегородившая русло каньона на глубине 800—1200 м. Размеры этого блока превышают несколько сот метров. Отрыв такого массива и его перемещение по крутому склону способны породить мощную приливную волну — цунами. Подобные явления очень часты на активных континентальных окраинах, где они порождаются землетрясениями и смещениями блоков земной коры по глубинным разломам. Однако самым распространенным и значимым с геологической точки зрения явлением, приводящим к перераспределению огромных масс осадочного материала, следует считать мутьевые, или турбидитные, течения. Как и другие суспензионные потоки, они зарождаются на краю шельфа или в верхней части континентального склона и вскоре превращаются в мутьевое облако. Вобрав огромные массы разнообразной взвеси, оно несется вниз по склону со скоростью в несколько десятков километров в час. Обычными трассами движения мутьевых течений являются подводные каньоны и ложбины, которые, собственно говоря, вырыты ими и постоянно разрабатываются благодаря мощному эродирующему воздействию мутьево-го потока на днище и борта каньона. Впрочем, в последнее время были описаны мутьевые потоки, не связанные пространственно с каньонами. Они действуют в основном в районах с высокой сейсмической активностью, в частности на фронтальных участках островных вулканических дуг, например в пределах склона аккреционного поднятия (асейсмичного хребта). Надо сказать, что с мутьевыми течениями связан особый класс осадков. Они отличаются ярко выраженными «труктурно-текстурными признаками и своеобразным характером организации вещества, прежде всего повторяв-«остью в разрезе. Голландский геолог Ф. Кюнен, изучавший повторяемость слоев в разрезах некоторых морских отложений, обратил внимание на присутствие слоев е градационной слоистостью: снизу вверх в них постепенно уменьшаются размеры частиц осадка. Ф. Кюнен первым дал объяснение подобному феномену. Он пришел к выводу и подтвердил его экспериментально, что такие слои формируются в процессе осаждения частиц из облака взвеси. Первыми благодаря большему весу на дно оседают более крупные осадочные зерна, а вслед за ними более мелкие, взвешенные в воде и обладающие большей плавучестью частицы. Таким образом зародилось представление о турбидитах» Интересно, что в верхней их части (кровле) есть слоечки, которые состоят из раковинок планктонных организмов, чаще всего фораминифер. Они живут в поверхностных -горизонтах водной толщи морей и океанов, а после отмирания их карбонатные раковинки опускаются сквозь воду на дно. Эти карбонатные слоечки резко контрастируют в колонках турбидитов с другими слоями, как правило образованными терригенным материалом либо обломками форменных элементов организмов, живущих на относительно мелком дне (раковины моллюсков, пластинки морских ежей и лилий, обломки кораллов и т. п.). Ф. Кюнен истолковал различия в составе материала, слагавшего низы и верхи турбидита, однозначно. Нижняя его часть составлена частицами, принесенными мутьевым потоком с шельфа или верхней части склона, т. е. в результате возникновения и схода вниз цо континентальному склону гравитационного потока, верхний же слоек образован тем материалом, который родился в самой водной толще (например, раковинки фораминифер) и никакого отношения к мутьевому потоку не имеет. Вместе эти слои образуют так называемый турбидитовый циклит. Удивительным оказался не только сам этот факт, но и масштабы времени, потребовавшегося для формирования циклита турбидита. Поскольку в разрезе турбидитов обычно много органических остатков (фауны и микрофауны), эпоха их отложения хорошо датируется. В такой толще легко подсчитать количество турбидитовых прослоев, т. е. число подводных лавин. Поделив время, в течение которого сложился весь разрез, на это число, можно узнать среднюю продолжительность временного интервала, отделяющего сход одной лавины от другой. Выяснилось, что в зависимости от тектонического режима того района, где происходили в геологическом прошлом эти события, продолжительность интервала колеблется от нескольких сот до нескольких тысяч лет. Размер единичного циклита весьма невелик —5—6 или 15—20 см. Следовательно, для того чтобы отложились эти 5—20 см осадка, потребовались тысячелетия. Стало ясно, что нижняя и большая часть каждого циклита, характеризующаяся градационной и тонкой параллельной слоичатостью, а также соседние производные от мутьевого потока слои образовались с точки зрения геологического времени практически мгновенно. Ведь мутьевое облако двигается со скоростью морского судна, а для осаждения частиц из него после прекращения движения, вероятно, требуется несколько недель, быть может, месяцев. Так на что же ушли сотни и тысячи лет, отделяющие сход одной подводной лавины от другой? Как это ни парадоксально, но все эти годы потребовались для формирования верхних, зачастую очень тонких слоечков, сложенных глиной и раковинками фораминифер. Вот каковы различия в масштабах отдельных седиментацион-иых процессов. В дальнейшем американский геолог А. Боума уточнил и детализировал модель Ф. Кюнена и выделил еще несколько горизонтов в циклите турбидитов, объяснив происхождение каждого из них. За последние десятилетия выяснилось широчайшее распространение турбидитов, других гравитационных отложений, многообразие их состава. Встречаются турбидиты терригенного, карбонатного, кремнистого, вулканогенного, но чаще всего смешанного состава. Ими образованы мощнейшие осадочные толщи как молодого, так и древнего возраста. В сущности, турбидиты давно были известны и фигурировали в геологических описаниях под названием «флиш». Но пожалуй, самым важным оказалась строгая пространственная локализация турбидитов. В большинстве своем они представляют отложения материковых окраин, накапливающиеся либо в пределах подножия континентального склона, либо в глубоководных желобах или впадинах асейсмичного хребта.
Следы «птичьих лап» в абиссали
Как было установлено в конце 60-х —начале 70-х годов, турбидиты распространены на окраинах континентов отнюдь не повсеместно. Они локализуются в пределах мощных аккумулятивных тел, размеры которых колеблются от относительно небольших (сотни квадратных километров) до гигантских (миллионы квадратных километров). Эти тела были названы подводными конусами выноса или глубоководными фэнами. Конусы выноса известны и на суше, где они образуются у выхода из гор, расположенных в аридном и ледовом климате, сезонных водных потоков. На равнине уклоны дна в руслах этих потоков резко уменьшаются, вследствие ч„-го потоки теряют скорость и уже не в состоянии перемещать крупный осадочный материал. Поэтому валуны, дресва и галька скапливаются здесь в виде дамбы, под-нруживающей течение горного потока. Через нее он пробивается в виде отдельных струй и ручьев, способных тащить лишь относительно мелкий материал — гравий, песок и более тонкие частицы. В дальнейшем по мере снижения скорости водных струй происходит осаждение гравийных и песчаных зерен. Так, ветвясь и меандрируя, ручейки воды достигают подножия естественной дамбы, растеряв по дороге большую часть переносимого ими материала. Оседая, этот материал постепенно наращивает аккумулятивное тело, имеющее в плане форму конуса. От паводка к паводку, когда горный поток, захватывая множество разнокалиберных обломков и взвеси, превращается в грозную силу, конус разрастается в высоту и по площади. Как выяснилось, нечто подобное происходит и под водой, близ устьев крупных каньонов, прорезающих континентальные склоны. Однако протекающие здесь процессы осадконакопления значительно сложнее и многообразнее тех, которые приводят к формированию конусов выноса на суше. Да и масштабность их совершенно иная. Поистине колоссальных размеров достигают глубоководные конусы выноса, выросшие на продолжении дельт крупнейших рек. Достаточно сказать, что подводный конус Ганга и Брахмапутры занимает почти всю глубоководную котловину Бенгальского залива и даже выходит за его пределы. Площадь этого конуса, вероятно, превышает несколько миллионов квадратных километров. Другой, не менее громадный глубоководный фэн находится в западной части Центральной Атлантики. Он является подводным продолжением дельты Амазонки и протягивается от континентального склона Бразилии до дальних отрогов Срединно-Атлантического хребта, покрывая расстояние более чем в тысячу километров. Практически каждая крупная водная артерия, выходящая к океану или на окраину котловинного морского водоема, формирует мощный конус. Это, кроме упомянутых, такие реки, как Миссисипи, Нигер, Конго, Лимпопо, Нил, Дунай, Рона, Маккензи, Ингури и др. Значительные по протяженности секторы современных континентальных окраин еще очень слабо изучены, поэтому пока трудно представить истинные масштабы такого геологического явления, как формирование подводных конусов выноса. Ясно, однако, что им принадлежит особая роль в развитии многих переходных зон от континентов к океану. Уже сам факт открытия глубоководных конусов вызвал в среде геологов определенное замешательство. Действительно, реки выносят с суши в океан огромные количества осадочного материала, главным образом в форме взвеси. Тем не менее долгое время полагали, что большая его часть как бы складируется в дельтах рек. Русло реки разбивается на крупные и мелкие рукава, каждый из которых наращивает в период активного развития «язык» из наносов, в основном из песка, выдвигающийся в открытое море. Передняя часть дельты является зоной смешения соленых морских и пресных речных вод, где слипаются и садятся на дно многие глинистые частицы. Скорости накопления осадков в дельтах настолько велики, что А. П. Лисицын отнес их к зонам лавинной седиментации, подразумевая при этом не зарождение подводных лавин, а именно огромный темп осаждения вещества. За сравнительно короткое время в районе дельты накапливается толща мощностью в несколько сот и даже тысяч метров. И вот эти-то грандиозные вместилища терригенного материала оказались лишь верхушкой айсберга, главная часть которого, как выяснилось благодаря работам Нормарка, Комара, Мура и других исследователей, находится глубоко под водой, у подножия континентальных склонов. Вскоре удалось установить, что подводные конусы выноса — это не только гигантские накопители осадков, но и система подводных русел, валов и поднятий, связанных в единое целое и развивающихся по своим законам. Если можно было бы удалить водную оболочку и посмотреть с самолета на глубоководный конус выноса, мы бы увидели рисунок, напоминающий гигантский след «птичей лапы». Пространственно она приурочена к подводному каньону. Именно от устья этого каньона отходит основная, питающая конус артерия, иначе говоря, центральная конусная долина, которая на удалении от континентального склона начинает распадаться на другие, гораздо более узкие и менее глубокие русла. Те, в свою очередь, ветвятся на более мелкие, распадаясь в конце концов на систему лощин и распадков, тонкой сетью кровеносных сосудов опутывающих нижнюю часть подводного конуса. Наиболее грандиозно (не с птичьего полета, а на сейсмопрофилях) выглядит верхняя половина глубоководного фэна. В подводном конусе Дуная (где автором данной работы совместно с другими научными сотрудниками МТУ проводились детальные геолого-геофизические исследования) ближняя к континентальному склону часть конуса представляет собой мощный насыпной кряж. Он поднимается над морским ложем на 600—700 м и протягивается от склона в глубь абиссали Черного моря на 120 км. По гребню этого поднятия шириной 30—50 км пролегает глубокая подводная долина У-образной формы, врезанная в тело подводного хребта на 400 м. На удалении от склона центральная долина несколько сужается, образует своего рода петлю и наконец распадается на сеть мелких ложбин и проток.
Абиссальная равнина
В целом эта часть конуса напоминает гигантскую боблейную трассу, по которой «прокатываются» мощные подводные лавины — мутьевые течения. Именно ими было насыпано тело конуса. Свидетельством их недавней активности являются гребни насыпных валов (второго порядка), которые тянутся вдоль всей центральной конусной долины как на южном, так и на северном ее борту. Высота валов достигает 200 и даже 300 м. Центральная конусная долина непосредственно связана с подводным каньоном, врезанным в континентальный склон, каньон же питается речными выносами Дуная. В настоящее время в условиях высокого стояния уровня моря дельта Дуная (и многих других рек) удалена от головной части каньона, сюда не поступает то количество осадочного материала, которого достаточно для образования мутьевых потоков. Судя по распределению различных типов осадков в подводном конусе выноса, последние 10— 15 тыс. лет здесь не накапливались турбидиты, следовательно, не возникали и мутьевые потоки. С бортов долины на ее дно сползают неуплотненные осадки — сапропелевые и диатомово-кокколитовые илы, образовавшиеся за счет чисто морских источников осадочного материала (организмов, живущих в водной толще). В результате многие подводные долины и русла постепенно засыпаются осадками. Так как в дельте крупных рек часто происходит перераспределение ролей между различными ее рукавами (одни постепенно отмирают, другие же становятся основными, транспортными артериями), со временем изменяется и статус того или иного подводного каньона. Периферийная ложбина на континентальном склоне начинает вдруг быстро углубляться и превращается вскоре в обширный и глубокий желоб, по которому вниз проходит выносимый из дельты реки терригенный материал. Старый же, до того основной, каньон заиливается. Как следствие, периферийная долина приобретает значение основной питающей артерии конуса выноса. Вдоль нее нарастает мощный аккумулятивный вал, поглощающий частично или полностью более древний. Именно такая ситуация сложилась в районе Дунайского фэна. Здесь под южным склоном современного хребта обнаруживается древний, засыпанный молодыми осадками конус выноса с характерной для подобных образовании глубокой центральной долиной. Контуры этого древнего поднятия отчетливо прорисовываются на ряде сей-смоакустических разрезов. Для каждого из основных геоморфологических элементов глубоководного конуса выноса характерны определенные типы осадков. В колонках, взятых в осевой части каньонов, встречаются многочисленные прослои песка и алевритов. В центральной конусной долине и в периферийных руслах конуса они также присутствуют в виде тонких слойков среди глинистых осадков. В бортовых частях русел накапливаются сползшие со склонов поднятия илы разного состава с характерной кашеобразной консистенцией. На валах, окружающих долину, формируются пачки турбидитов. В Черноморском регионе, в подводных конусах Дуная, Ингури и других рек, они представлены крошкой плотных древних пород — аргиллитов, обогащенных закисным железом и окрашенных в черный цвет. Этими породами сложены днище и борта каньонов, по которым устремляются вниз мутьевые потоки. Их воздействие на дно настолько энергично, что приводит к разрушению даже очень плотного субстрата. Обломки пород, главным образом глины, выносятся в пределы подводного конуса. При этом часть пиритного железа, по-видимому, окисляется до гидротроилита — минерала, придающего осадкам иссиня-черную окраску. При его окислении на воздухе цвет осадков вскоре меняется на ржаво-рыжий. Поэтому турбидиты в колонках, поднятых с валов на вершинной части конуса выноса, отчетливо проявляются на воздухе (прослои с дресвой древних темноцветных глин на воздухе становятся рыжими). Толщина отдельных циклитов эдесь изменяется от 5 до 15 см, причем иссиня-черные (впоследствии рыжие) горизонты разделены голубоватыми пластичными глинистыми илами. Общий вид такой колонки, разрезанной на половинки для детального описания и съемки осадков, напоминает рисунок на шкуре зебры. В дальних частях подводных конусов выноса, развитых на континентальном подножии Кавказа, появляются классические турбидиты с градационным нижним горизонтом и верхним карбонатным слоечком, сложенным фрагментами наннопланктона. В древних глубоководных фэнах, существовавших некогда на активных окраинах материков в Тихом океане (например, в пределах континентальной окраины Калифорнии), в составе верхней части конуса накапливались мощные пачки конгломератов — отложений, которые образованы галькой разнообразных пород. Описаны здесь и отложения потоков обломков — медленно текущих подводных селей. Однако главным элементом большинства подводных конусов выноса остаются повсеместно турбидиты, состав которых меняется от района к району, так как зависит прежде всего от характера тех толщ, которыми сложены континентальный склон или подножие. Там, где крупные реки сбрасывают в океан огромное количество материала, смываемого с обширнейших пространств континента, подводные конусы приобретают грандиозные размеры не только в ширину, но и в высоту. Осадки засыпают здесь склон вплоть до бровки шельфа, трансформируя его в поднятие, поверхность которого ступенчато опускается в сторону абиссальной котловины. Это связано с образованием многочисленных сбросов в толще неуцлотненных отложений. При этом отдельные блоки неравномерно проседают в результате отжатия из пластов седиментационных вод. По периферии конуса нередко наблюдаются структуры протыкания — глиняные диапиры. Подводные конусы выноса не просто своеобразные формы аккумулятивного рельефа на океанском дне. Там, где они создавались миллионы лет, например на продолжении дельт Нигера, Миссисипи, Маккензи и др., на континентальных окраинах сложились мощнейшие комплексы осадочных пород, способные вмещать многочисленные залежи нефти и газа. Действительно, в последние годы благодаря морскому разведочному бурению в этих районах были открыты десятки крупных и средних по за-пасам месторождений нефти и газа. В подводных конусах Нигера и Миссисипи нефтяные скопления обнаружены не только в относительно древних образованиях (песчаниках), но и, что удивительно, в песках исключительно молодого, плейстоценового возраста.
Почему рвутся подводные кабели
19 ноября 1929 г. произошло экстраординарное событие: в течение короткого времени между Северной Америкой и Европой прекратилась телефонная и телеграфная связь. Она обеспечивалась системой подводных кабелей, трассы которых пролегали через континентальный склон в районе Большой Ньюфаундлендской банки. Проведенное обследование показало, что кабели были порваны. Поскольку одновременно с нарушением связи сейсмические станции на континенте зафиксировали в этом районе небольшое землетрясение, всю ответственность за случившееся возложили на него. Однако вскоре выявилась любопытная подробность: связь по различным каналам прекратилась не одновременно, а с интервалами, причем первыми были порваны кабели, проложенные на меньших глубинах, последними же — на больших. В 60-х годах, когда появились надежные средства исследования океанского дна, была найдена разгадка тех событий. Выяснилось, что в результате подземного толчка с края шельфа Большой Ньюфаундлендской банки на склон хлынули огромные массы рыхлого песка, образовавшие подводный суспензионный поток типа селевого. Ударной силы его оказалось достаточно, чтобы порвать подводные кабели, проложенные в различных частях склона. Подняв старые документы, американские геологи Ф. Шепард и Р. Дилл по времени прекращения связи рассчитали, что скорость подводной лавины достигала 30 км/ч. Для подводных условий это не так уж мало, если учесть, что вместе с лавиной на континентальное подножие переместилась масса осадков огромного объема. Подобные суспензионные потоки, представляющие собой смесь осадочного материала с водой, отличаются значительной плотностью; они называются масс-флоу (по англ. «флоу»— поток). Пастообразные потоки, или потоки обломков, обусловлены течением вниз по склону вязких масс глинистого или карбонатно-глинистого ила, также обладающих высокой плотностью. Эти потоки напоминают сели, хотя и двигаются под водой несравненно медленнее. Они увлекают вместе с собой все попадающиеся на пути обломки, вплоть до гальки и валунов, и способны достигать больших глубин. Так, один из них был закартирован геофизическими методами при исследовании атлантической окраины США на глубинах 4500—5000 м. Потоки обломочного материала все же не приводят к таким грандиозным перемещениям осадков, которые связаны с другими, более масштабными явлениями, например с гигантскими подводными оползнями. Об истинных масштабах последних стало известно только после того, как началась планомерная сейсмоакустическая съемка континентальных склонов и подножий. В результате на континентальных окраинах в Северной Атлантике были обнаружены подводные гряды оползневого происхождения высотой до 1000 м и протяженностью в десятки и сотни километров. Один из таких оползневых фронтов прослеживается к югу от мыса Хаттерас (атлантическая окраина США) в средней части континентального склона почти на 100 км. Многочисленные оползни покрывают склон и верхнюю часть подножия черноморской окраины Кавказа. Как показывает изучение колонок поднятых осадков, один оползень обычно покоится здесь на другом, а общее число мелких оползней в одном небольшом разрезе, длиной 3—4 м, может достигать 8 или 10. На сейсмопрофилях нередко видно совершенно хаотическое залегание отдельных массивов осадков, съехавших по склону и образовавших грядовый рельеф. При исследовании тихоокеанского склона Камчатки в одном из подводных каньонов с помощью сейсмоакустики (НСП) была обнаружена огромная глыба древних пород, оторвавшаяся от коренного субстрата (видимо, от края шельфа) и перегородившая русло каньона на глубине 800—1200 м. Размеры этого блока превышают несколько сот метров. Отрыв такого массива и его перемещение по крутому склону способны породить мощную приливную волну — цунами. Подобные явления очень часты на активных континентальных окраинах, где они порождаются землетрясениями и смещениями блоков земной коры по глубинным разломам. Однако самым распространенным и значимым с геологической точки зрения явлением, приводящим к перераспределению огромных масс осадочного материала, следует считать мутьевые, или турбидитные, течения. Как и другие суспензионные потоки, они зарождаются на краю шельфа или в верхней части континентального склона и вскоре превращаются в мутьевое облако. Вобрав огромные массы разнообразной взвеси, оно несется вниз по склону со скоростью в несколько десятков километров в час. Обычными трассами движения мутьевых течений являются подводные каньоны и ложбины, которые, собственно говоря, вырыты ими и постоянно разрабатываются благодаря мощному эродирующему воздействию мутьево-го потока на днище и борта каньона. Впрочем, в последнее время были описаны мутьевые потоки, не связанные пространственно с каньонами. Они действуют в основном в районах с высокой сейсмической активностью, в частности на фронтальных участках островных вулканических дуг, например в пределах склона аккреционного поднятия (асейсмичного хребта). Надо сказать, что с мутьевыми течениями связан особый класс осадков. Они отличаются ярко выраженными «труктурно-текстурными признаками и своеобразным характером организации вещества, прежде всего повторяв-«остью в разрезе. Голландский геолог Ф. Кюнен, изучавший повторяемость слоев в разрезах некоторых морских отложений, обратил внимание на присутствие слоев е градационной слоистостью: снизу вверх в них постепенно уменьшаются размеры частиц осадка. Ф. Кюнен первым дал объяснение подобному феномену. Он пришел к выводу и подтвердил его экспериментально, что такие слои формируются в процессе осаждения частиц из облака взвеси. Первыми благодаря большему весу на дно оседают более крупные осадочные зерна, а вслед за ними более мелкие, взвешенные в воде и обладающие большей плавучестью частицы. Таким образом зародилось представление о турбидитах» Интересно, что в верхней их части (кровле) есть слоечки, которые состоят из раковинок планктонных организмов, чаще всего фораминифер. Они живут в поверхностных -горизонтах водной толщи морей и океанов, а после отмирания их карбонатные раковинки опускаются сквозь воду на дно. Эти карбонатные слоечки резко контрастируют в колонках турбидитов с другими слоями, как правило образованными терригенным материалом либо обломками форменных элементов организмов, живущих на относительно мелком дне (раковины моллюсков, пластинки морских ежей и лилий, обломки кораллов и т. п.). Ф. Кюнен истолковал различия в составе материала, слагавшего низы и верхи турбидита, однозначно. Нижняя его часть составлена частицами, принесенными мутьевым потоком с шельфа или верхней части склона, т. е. в результате возникновения и схода вниз цо континентальному склону гравитационного потока, верхний же слоек образован тем материалом, который родился в самой водной толще (например, раковинки фораминифер) и никакого отношения к мутьевому потоку не имеет. Вместе эти слои образуют так называемый турбидитовый циклит. Удивительным оказался не только сам этот факт, но и масштабы времени, потребовавшегося для формирования циклита турбидита. Поскольку в разрезе турбидитов обычно много органических остатков (фауны и микрофауны), эпоха их отложения хорошо датируется. В такой толще легко подсчитать количество турбидитовых прослоев, т. е. число подводных лавин. Поделив время, в течение которого сложился весь разрез, на это число, можно узнать среднюю продолжительность временного интервала, отделяющего сход одной лавины от другой. Выяснилось, что в зависимости от тектонического режима того района, где происходили в геологическом прошлом эти события, продолжительность интервала колеблется от нескольких сот до нескольких тысяч лет. Размер единичного циклита весьма невелик —5—6 или 15—20 см. Следовательно, для того чтобы отложились эти 5—20 см осадка, потребовались тысячелетия. Стало ясно, что нижняя и большая часть каждого циклита, характеризующаяся градационной и тонкой параллельной слоичатостью, а также соседние производные от мутьевого потока слои образовались с точки зрения геологического времени практически мгновенно. Ведь мутьевое облако двигается со скоростью морского судна, а для осаждения частиц из него после прекращения движения, вероятно, требуется несколько недель, быть может, месяцев. Так на что же ушли сотни и тысячи лет, отделяющие сход одной подводной лавины от другой? Как это ни парадоксально, но все эти годы потребовались для формирования верхних, зачастую очень тонких слоечков, сложенных глиной и раковинками фораминифер. Вот каковы различия в масштабах отдельных седиментацион-иых процессов. В дальнейшем американский геолог А. Боума уточнил и детализировал модель Ф. Кюнена и выделил еще несколько горизонтов в циклите турбидитов, объяснив происхождение каждого из них. За последние десятилетия выяснилось широчайшее распространение турбидитов, других гравитационных отложений, многообразие их состава. Встречаются турбидиты терригенного, карбонатного, кремнистого, вулканогенного, но чаще всего смешанного состава. Ими образованы мощнейшие осадочные толщи как молодого, так и древнего возраста. В сущности, турбидиты давно были известны и фигурировали в геологических описаниях под названием «флиш». Но пожалуй, самым важным оказалась строгая пространственная локализация турбидитов. В большинстве своем они представляют отложения материковых окраин, накапливающиеся либо в пределах подножия континентального склона, либо в глубоководных желобах или впадинах асейсмичного хребта.
Следы «птичьих лап» в абиссали
Как было установлено в конце 60-х —начале 70-х годов, турбидиты распространены на окраинах континентов отнюдь не повсеместно. Они локализуются в пределах мощных аккумулятивных тел, размеры которых колеблются от относительно небольших (сотни квадратных километров) до гигантских (миллионы квадратных километров). Эти тела были названы подводными конусами выноса или глубоководными фэнами. Конусы выноса известны и на суше, где они образуются у выхода из гор, расположенных в аридном и ледовом климате, сезонных водных потоков. На равнине уклоны дна в руслах этих потоков резко уменьшаются, вследствие ч„-го потоки теряют скорость и уже не в состоянии перемещать крупный осадочный материал. Поэтому валуны, дресва и галька скапливаются здесь в виде дамбы, под-нруживающей течение горного потока. Через нее он пробивается в виде отдельных струй и ручьев, способных тащить лишь относительно мелкий материал — гравий, песок и более тонкие частицы. В дальнейшем по мере снижения скорости водных струй происходит осаждение гравийных и песчаных зерен. Так, ветвясь и меандрируя, ручейки воды достигают подножия естественной дамбы, растеряв по дороге большую часть переносимого ими материала. Оседая, этот материал постепенно наращивает аккумулятивное тело, имеющее в плане форму конуса. От паводка к паводку, когда горный поток, захватывая множество разнокалиберных обломков и взвеси, превращается в грозную силу, конус разрастается в высоту и по площади. Как выяснилось, нечто подобное происходит и под водой, близ устьев крупных каньонов, прорезающих континентальные склоны. Однако протекающие здесь процессы осадконакопления значительно сложнее и многообразнее тех, которые приводят к формированию конусов выноса на суше. Да и масштабность их совершенно иная. Поистине колоссальных размеров достигают глубоководные конусы выноса, выросшие на продолжении дельт крупнейших рек. Достаточно сказать, что подводный конус Ганга и Брахмапутры занимает почти всю глубоководную котловину Бенгальского залива и даже выходит за его пределы. Площадь этого конуса, вероятно, превышает несколько миллионов квадратных километров. Другой, не менее громадный глубоководный фэн находится в западной части Центральной Атлантики. Он является подводным продолжением дельты Амазонки и протягивается от континентального склона Бразилии до дальних отрогов Срединно-Атлантического хребта, покрывая расстояние более чем в тысячу километров. Практически каждая крупная водная артерия, выходящая к океану или на окраину котловинного морского водоема, формирует мощный конус. Это, кроме упомянутых, такие реки, как Миссисипи, Нигер, Конго, Лимпопо, Нил, Дунай, Рона, Маккензи, Ингури и др. Значительные по протяженности секторы современных континентальных окраин еще очень слабо изучены, поэтому пока трудно представить истинные масштабы такого геологического явления, как формирование подводных конусов выноса. Ясно, однако, что им принадлежит особая роль в развитии многих переходных зон от континентов к океану. Уже сам факт открытия глубоководных конусов вызвал в среде геологов определенное замешательство. Действительно, реки выносят с суши в океан огромные количества осадочного материала, главным образом в форме взвеси. Тем не менее долгое время полагали, что большая его часть как бы складируется в дельтах рек. Русло реки разбивается на крупные и мелкие рукава, каждый из которых наращивает в период активного развития «язык» из наносов, в основном из песка, выдвигающийся в открытое море. Передняя часть дельты является зоной смешения соленых морских и пресных речных вод, где слипаются и садятся на дно многие глинистые частицы. Скорости накопления осадков в дельтах настолько велики, что А. П. Лисицын отнес их к зонам лавинной седиментации, подразумевая при этом не зарождение подводных лавин, а именно огромный темп осаждения вещества. За сравнительно короткое время в районе дельты накапливается толща мощностью в несколько сот и даже тысяч метров. И вот эти-то грандиозные вместилища терригенного материала оказались лишь верхушкой айсберга, главная часть которого, как выяснилось благодаря работам Нормарка, Комара, Мура и других исследователей, находится глубоко под водой, у подножия континентальных склонов. Вскоре удалось установить, что подводные конусы выноса — это не только гигантские накопители осадков, но и система подводных русел, валов и поднятий, связанных в единое целое и развивающихся по своим законам. Если можно было бы удалить водную оболочку и посмотреть с самолета на глубоководный конус выноса, мы бы увидели рисунок, напоминающий гигантский след «птичей лапы». Пространственно она приурочена к подводному каньону. Именно от устья этого каньона отходит основная, питающая конус артерия, иначе говоря, центральная конусная долина, которая на удалении от континентального склона начинает распадаться на другие, гораздо более узкие и менее глубокие русла. Те, в свою очередь, ветвятся на более мелкие, распадаясь в конце концов на систему лощин и распадков, тонкой сетью кровеносных сосудов опутывающих нижнюю часть подводного конуса. Наиболее грандиозно (не с птичьего полета, а на сейсмопрофилях) выглядит верхняя половина глубоководного фэна. В подводном конусе Дуная (где автором данной работы совместно с другими научными сотрудниками МТУ проводились детальные геолого-геофизические исследования) ближняя к континентальному склону часть конуса представляет собой мощный насыпной кряж. Он поднимается над морским ложем на 600—700 м и протягивается от склона в глубь абиссали Черного моря на 120 км. По гребню этого поднятия шириной 30—50 км пролегает глубокая подводная долина У-образной формы, врезанная в тело подводного хребта на 400 м. На удалении от склона центральная долина несколько сужается, образует своего рода петлю и наконец распадается на сеть мелких ложбин и проток.
Абиссальная равнина
В целом эта часть конуса напоминает гигантскую боблейную трассу, по которой «прокатываются» мощные подводные лавины — мутьевые течения. Именно ими было насыпано тело конуса. Свидетельством их недавней активности являются гребни насыпных валов (второго порядка), которые тянутся вдоль всей центральной конусной долины как на южном, так и на северном ее борту. Высота валов достигает 200 и даже 300 м. Центральная конусная долина непосредственно связана с подводным каньоном, врезанным в континентальный склон, каньон же питается речными выносами Дуная. В настоящее время в условиях высокого стояния уровня моря дельта Дуная (и многих других рек) удалена от головной части каньона, сюда не поступает то количество осадочного материала, которого достаточно для образования мутьевых потоков. Судя по распределению различных типов осадков в подводном конусе выноса, последние 10— 15 тыс. лет здесь не накапливались турбидиты, следовательно, не возникали и мутьевые потоки. С бортов долины на ее дно сползают неуплотненные осадки — сапропелевые и диатомово-кокколитовые илы, образовавшиеся за счет чисто морских источников осадочного материала (организмов, живущих в водной толще). В результате многие подводные долины и русла постепенно засыпаются осадками. Так как в дельте крупных рек часто происходит перераспределение ролей между различными ее рукавами (одни постепенно отмирают, другие же становятся основными, транспортными артериями), со временем изменяется и статус того или иного подводного каньона. Периферийная ложбина на континентальном склоне начинает вдруг быстро углубляться и превращается вскоре в обширный и глубокий желоб, по которому вниз проходит выносимый из дельты реки терригенный материал. Старый же, до того основной, каньон заиливается. Как следствие, периферийная долина приобретает значение основной питающей артерии конуса выноса. Вдоль нее нарастает мощный аккумулятивный вал, поглощающий частично или полностью более древний. Именно такая ситуация сложилась в районе Дунайского фэна. Здесь под южным склоном современного хребта обнаруживается древний, засыпанный молодыми осадками конус выноса с характерной для подобных образовании глубокой центральной долиной. Контуры этого древнего поднятия отчетливо прорисовываются на ряде сей-смоакустических разрезов. Для каждого из основных геоморфологических элементов глубоководного конуса выноса характерны определенные типы осадков. В колонках, взятых в осевой части каньонов, встречаются многочисленные прослои песка и алевритов. В центральной конусной долине и в периферийных руслах конуса они также присутствуют в виде тонких слойков среди глинистых осадков. В бортовых частях русел накапливаются сползшие со склонов поднятия илы разного состава с характерной кашеобразной консистенцией. На валах, окружающих долину, формируются пачки турбидитов. В Черноморском регионе, в подводных конусах Дуная, Ингури и других рек, они представлены крошкой плотных древних пород — аргиллитов, обогащенных закисным железом и окрашенных в черный цвет. Этими породами сложены днище и борта каньонов, по которым устремляются вниз мутьевые потоки. Их воздействие на дно настолько энергично, что приводит к разрушению даже очень плотного субстрата. Обломки пород, главным образом глины, выносятся в пределы подводного конуса. При этом часть пиритного железа, по-видимому, окисляется до гидротроилита — минерала, придающего осадкам иссиня-черную окраску. При его окислении на воздухе цвет осадков вскоре меняется на ржаво-рыжий. Поэтому турбидиты в колонках, поднятых с валов на вершинной части конуса выноса, отчетливо проявляются на воздухе (прослои с дресвой древних темноцветных глин на воздухе становятся рыжими). Толщина отдельных циклитов эдесь изменяется от 5 до 15 см, причем иссиня-черные (впоследствии рыжие) горизонты разделены голубоватыми пластичными глинистыми илами. Общий вид такой колонки, разрезанной на половинки для детального описания и съемки осадков, напоминает рисунок на шкуре зебры. В дальних частях подводных конусов выноса, развитых на континентальном подножии Кавказа, появляются классические турбидиты с градационным нижним горизонтом и верхним карбонатным слоечком, сложенным фрагментами наннопланктона. В древних глубоководных фэнах, существовавших некогда на активных окраинах материков в Тихом океане (например, в пределах континентальной окраины Калифорнии), в составе верхней части конуса накапливались мощные пачки конгломератов — отложений, которые образованы галькой разнообразных пород. Описаны здесь и отложения потоков обломков — медленно текущих подводных селей. Однако главным элементом большинства подводных конусов выноса остаются повсеместно турбидиты, состав которых меняется от района к району, так как зависит прежде всего от характера тех толщ, которыми сложены континентальный склон или подножие. Там, где крупные реки сбрасывают в океан огромное количество материала, смываемого с обширнейших пространств континента, подводные конусы приобретают грандиозные размеры не только в ширину, но и в высоту. Осадки засыпают здесь склон вплоть до бровки шельфа, трансформируя его в поднятие, поверхность которого ступенчато опускается в сторону абиссальной котловины. Это связано с образованием многочисленных сбросов в толще неуцлотненных отложений. При этом отдельные блоки неравномерно проседают в результате отжатия из пластов седиментационных вод. По периферии конуса нередко наблюдаются структуры протыкания — глиняные диапиры. Подводные конусы выноса не просто своеобразные формы аккумулятивного рельефа на океанском дне. Там, где они создавались миллионы лет, например на продолжении дельт Нигера, Миссисипи, Маккензи и др., на континентальных окраинах сложились мощнейшие комплексы осадочных пород, способные вмещать многочисленные залежи нефти и газа. Действительно, в последние годы благодаря морскому разведочному бурению в этих районах были открыты десятки крупных и средних по за-пасам месторождений нефти и газа. В подводных конусах Нигера и Миссисипи нефтяные скопления обнаружены не только в относительно древних образованиях (песчаниках), но и, что удивительно, в песках исключительно молодого, плейстоценового возраста.