Реки в океане
Известно, что в океане существуют гигантские струйные течения, определяющие климат многих стран. Например, Гольфстрим и Ойясио распространяются на тысячи километров. Гольфстрим ежегодно перекачивает огромные массы теплой воды из тропических широт, главным образом из Мексиканского залива, в полярные области, отогревая побережья Скандинавии и Кольского полуострова, которые в противном случае были бы ледяными пустынями. Ойясио, напротив, гонит охлажденные в высоких широтах воды вдоль гряды Курильских и Японских островов на юг, делая климат наших восточных побережий более суровым. Не так давно в океане были обнаружены другие течения, не менее мощные. Их можно назвать реками в океане. Они текут близ поверхности дна над подножием континентальных склонов из высоких широт в низкие. Так как эти течения несут свои воды вдоль контура материков, они получили название контурных геострофических. Первыми свидетельствами существования этих придонных течений были фотографии участков дна на глубинах 3000—5000 м, сделанные в южных районах атлантической окраины США. На них отчетливо видны разнообразные знаки ряби на поверхности осадка. Знаки ряби — это система субпараллельных подводных валов и разделяющих их ложбин, которая напоминает ветровую рябь, возникающую на поверхности воды. Ее появление на дне связано с перераспределением частиц осадка под воздействием струй придонного течения. Знаки ряби известны в руслах рек, в эстуариях и дельтах, на приливно-отливных равнинах, на открытых участках шельфа, а также на абиссали — словом, везде, где перемещаются водные массы. В зависимости от высоты гребней подводных валов и расстояний между ними различаются мелкая рябь, мега-рябь и подводные дюны. Мегарябь, например, характеризуется превышением ее гребней над ложем ложбин не свыше 60 см и расстоянием между соседними волнами ряби до 12 м. Подобные же «волны», но меньшей высоты и длины, именуются просто знаками ряби. Наконец, крупные аккумулятивные тела на поверхности дна по ассоциации с прибрежными насыпными формами получили название подводных дюн. В глубоководных обстановках наблюдались дюны высотой 91 м. Нередко они выстраиваются цепочками с расстояниями между соседними валами 9,6 км. В пределах континентальных подножий были открыты целые поля ряби, сформировавшейся на поверхности осадка. Стало ясно, что речь идет о новом явлении, ведь на абиссали не действуют приливно-отливные течения, ветровые волны или океанская зыбь. Дальнейшие исследования подтвердили, что обнаружены следы процессов, имеющих глобальные масштабы и играющих первостепенную роль в «проветривании» (вентиляции) океанских глубин. Датчики скорости течений, установленные у дна, зафиксировали устойчивые перемещения водных масс над некоторыми его участками со скоростью до 50 см/с. Эти придонные течения устремлялись к экватору и, как выяснилось вскоре, даже пересекали его, проникая в другое полушарие. Сначала было открыто Арктическое контурное течение, формируемое холодными водами высоких широт северного полушария. Затем над континентальным подножием Южной Америки в Атлантическом океане обнаружили другое контурное течение, несущее к экватору холодные воды антарктического происхождения. Над окраиной Южной Бразилии оба течения встречаются и текут одно под другим в противоположных направлениях: арктические водные массы над антарктическими, более xолодными и тяжелыми. Таким образом, соленые тяжелые воды, охлажденные в высоких широтах, погружаются ко дну абиссальных котловин вдоль континентальных склонов полярных стран и текут над дном вдоль контура материков к экватору. Это довольно медленные течения, разбивающиеся на отдельные струи, меандрирующие в пространстве. Однако эту пространственную неустойчивость компенсирует их относительная стабильность во времени. Холодные воды богаты кислородом, поэтому контурные течения разносят его на огромных пространствах, предотвращая тем самым возникновение застойных явлений и сероводородного заражения осадков и придонных масс воды. Как и реки на суше, контурные течения перемещают не только огромные водные массы, но и значительное количество осадочного материала. При скорости 40—50 см/с вода способна волочить частицы довольно крупных размеров, вплоть до крупного песка. Собственно говоря, знаки ряби и являются прямым свидетельством перемещения осадков. Ведь волны ряби постоянно мигрируют, двигаясь по ходу течения с небольшой, но довольно постоянной скоростью. При этом зерна осадка время от времени взмучиваются и оседают в зависимости от ундуляции скорости отдельных водных струй у дна. Об эффективности этого процесса свидетельствует тот факт, что осадочный материал, подхваченный в высоких арктических широтах, в конечном итоге оказывается вблизи экватора и даже к югу от него. Более того, контурные течения, энергия которых в значительной степени расходуется по пути к экватору, на определенном отрезке уже не способны перемещать значительное количество частиц. Они оседают, формируя поля подводных дюн или гигантские насыпные валы. Одним из наиболее изученных образований такого рода является вал Блейк, отделяющий континентальное подножие Багамской погруженной платформы от внутренних частей абиссальной котловины в центральном секторе Атлантики. Протяженность другого вала, Ньюфаундлендского, превышает 500 км, а высота более 1 км. Мощность осадочной толщи, состоящей, как полагают, почти исключительно из контуритов, составляет 1,5 км. Это пятнистые однородные с плохо выраженной слоистостью отложения, имеющие преимущественно карбонатно-терригенный состав (известковые глины и мергели) и пелитово-алевритовую размерность (0,1 мм), в том числе раковинками фораминифер (более 20%) и скелетными остатками других организмов. Осадки обычно плохо отсортированы и несут следы сильного перемешивания илоедами. Скорости их накопления меняются от 1 до 12 см в 1000 лет. Казалось бы, каким образом можно установить, что осадки вала Блейк или какого-либо другого аналогичного по строению поднятия на дне океана являются контурптами? На деле существуют вполне надежные критерии. Ведь материал, идущий из приполярных широт, весьма своеобразен по составу. Это касается прежде всего глинистой фракции, в которой преобладают иллит и хлорит — минералы, легко разрушающиеся в гумидных условиях на суше. С континента в океан они сносятся в основном ледниками, т. е. в полярных широтах. В тропиках же эти минералы, особенно хлорит, становятся неустойчивыми. Поэтому, когда на участках континентального подножия в низких широтах появляются осадки с явно чужеродной для окружающей суши минеральной ассоциацией, можно заподозрить, что эти осадки отложены контурным геострофическим течением.
С борта судна океан чаще всего кажется безжизненным. Иногда за несколько дней плавания удается увидеть лишь двух-трех дельфинов, пристроившихся к носу судна, либо редкий фонтанчик воды, выброшенный в воздух кашалотом, случается мелькнет акула. Однако это впечатление верно, если считать, что океан населяют только крупные животные. На самом деле в поверхностном слое океана обитают мельчайшие организмы — фитопланктон, питающий все остальные группы морских организмов. Для существования фитопланктона мало только солнечного света и растворенной в воде углекислоты, участвующих в фотосинтезе. Необходимы также биогенные элементы, и прежде всего фосфор, азот, кремний, кальций, из которых строятся органические и неорганические части организма. В большинстве районов океана фитопланктон развивается в условиях жесткого лимита нитратов, фосфатов и кремнезема. По мере выедания этих соединений цветение фитопланктона притормаживается. Однако известны такие зоны в океане, где фитопланктон не испытывает недостатка в биогенных соединениях. В результате величина биологической продукции в этих зонах необычайно высока — в тысячи и десятки тысяч раз превосходит среднюю для океана. Плотность популяций фито- и зоопланктона, ряда видов рыб, морских млекопитающих и птиц здесь достигает максимальных значений. Эти огромные по протяженности (несколько сот и даже тысячи километров), но относительно узкие области вдоль континентальных окраин — настоящие природные питомники. Подобная, на первый взгляд странная локализация жизни в океане определяется исключительно важным и интересным явлением, получившим наименование «апвеллинг» (устойчивый подъем глубинных вод). Дело в том, что в нижней части водной толщи океана скапливается и разлагается большая часть выведенных из биологического круговорота продуктов метаболизма морских организмов. Поэтому за многие миллионы лет здесь образовалась настоящая кладовая всех необходимых для жизни веществ. Отсутствие света на больших глубинах не дает возможности организмам их использовать. Однако там, где глубинные массы поднимаются вверх, сразу же наблюдается вспышка жизни, которая поддерживается почти непрерывным цветением фитопланктона. Наиболее интенсивные и устойчивые апвеллинги возникают в областях пассатной циркуляции. Пассаты, постоянно дующие в западном направлении ветры, отгоняют от побережья теплую поверхностную воду. На ее место из глубин поднимается холодная, богатая биогеиами вода. Пассаты дуют из пустынь на границе тропической и субтропической зон. Они во многом определяют структуру поверхностных течений. Возбуждаемые ими экваториальные течения выносят огромные массы разогретой воды из восточной периферии океана в западную. Отсюда теплые тропические течения движутся вдоль континентальных окраин на юг или на север. Грандиозный перепое теплых вод в средние и высокие широты компенсируется с другой стороны океана перетоком холодных вод из антарктических (или арктических) районов по направлению к тропикам. Эти течения, названные холодными пограничными, двигаясь вдоль восточных континентальных окраин в Тихом, Атлантическом и Индийском океанах, играют особую роль. Насыщенные кислородом, холодные воды особенно благоприятны для развития в зонах апвеллинга крупных популяций организмов. К мощным холодным пограничным течениям относятся Перуанское и Калифорнийское в Тихом океане, Канарнoe и Бенгельское в Атлантике, Восточно-Австралийское в Индийском океане. Вместе с холодными водами Перуанского и Бенгельского течений почти к самым тропикам из Антарктики поднимаются киты, пингвины, морские слоны и другие животные, а также птицы из высоких широт. Здесь они охотятся за многочисленными стаями рыб, ресурсы которых в апвеллинговых зонах поистине неисчерпаемы. Автору этих строк довелось участвовать в исследованиях, проводившихся в 1972 г. на судне «Профессор Месяцев» у побережья Перу совместно с перуанскими специалистами. Ночью вода здесь фосфоресцирует от несметного множества крошечных живых существ — диатомей. То тут, то там ее прочерчивают сотни зеленых полосок. Это проносятся стайки перуанского анчоуса — мелкой рыбешки, брюшные полости которой набиты светящимся фитопланктоном. Диатомей, строящие свои панцири из кремнезема, особенно бурно размножаются в холодной воде. Мелкие рачки и рыбешки не способны поглотить огромные количества этих существ. Отмирая, они опускаются на дно, где разлагаются, образуя черный осадок типа каши. Этот осадок содержит также целые или полуразрушенные створки панцирей диатомей, зерна кварца с «пустынным загаром» и агрегаты глинистых частиц. Значения рН в таком осадке обычно составляют 9—10, a Eh (окислительно-восстановительный потенциал) нередко опускается до —200 мВ. Это максимальные значения, определяемые в современных осадках. Они свидетельствуют о существовании на дне агрессивной щелочной среды, обусловленной отсутствием кислорода и сероводородным заражением не только самого осадка, но и придонного слоя воды. Созданию такой обстановки на шельфе и на прилегающих участках склона способствуют, видимо, катастрофические заморы, время от времени случающиеся в зонах подъема глубинных вод. В районе перуанского апвеллинга они связаны с отходом холодного течения от подводной окраины континента или с поворотом на юг теплого экваториального течения Эль-Ниньо. Вторжение разогретых до 30° вод, почти лишенных кислорода, приводит сначала к гибели диатомового фитопланктона, а затем и всего сообщества рыб, птиц и морских организмов, составляющих единую трофическую цепочку. Подобные процессы носят циклический характер: они происходят в среднем раз в 10—12 лет. Катастрофические заморы отмечались у побережья Юго-Западной Африки, т. е. в зоне действия Бенгельского течения, у Западного побережья полуострова Индостан, где является сезонным и связан с муссонами. Скопление на дне огромного количества неразложившихся органических остатков создает неблагоприятные условия для развития бентоса, представленного здесь лишь немногими группами микроорганизмов, например сульфатредуцирующими бактериями. Концентрации органического вещества в переводе на Сорг достигают В осадках апвеллинговых зон 10—16% сухого веса. Это вещество присутствует в форме сложных полигетероконденсатов, содержащих фрагменты белковой, углеводной и нуклеиновой природы. Много и липидных компонентов. Вместе с органическими остатками в осадки попадает большое количество фосфора, серы, меди, железа, ванадия, урана и других биофильных элементов. Одни из них входили в состав прижизненных клеточных структур, другие адсорбировались при прохождении органических остатков сквозь толщу воды. В условиях высоких рН и отрицательных Eh многие устойчивые образования, например кремнистые скорлупки диатомей, распадаются, а некоторые элементы становятся подвижными. Уходя из зон распространения углеродистых черных илов, они концентрируются на границах их ареалов. Фосфор выпадает главным образом в виде карбонатапатита, замещая костные остатки животных, либо образует фосфатные «рубашки» вокруг зерен терригенных минералов: кварца, полевых шпатов и др. Промысловые тралы, использовавшиеся в экспедиции на «Профессоре Месяцеве» для изучения донных рыб и других бентосных животных, нередко поднимали со дна целые фосфоритовые плиты вместе с Другими коренными породами. Области древних апвеллингов являются в настоящее время богатейшими фосфоритоносными провинциями. Таковы, например, Марокканский и Сенегальский бассейны, а также бассейн Тарфая-Аюн на континентальной окраине Северо-Западной Африки. С зонами апвеллингов связаны уникальные парагенезы осадков, не встречающиеся в других частях ложа океана. Так, в верхней половине континентального склона многие участки покрыты глауконитовым песком. Глауконит — минерал глинистой природы, встречающийся, однако, не в виде тонких чешуек, как большинство глинистых минералов, а в форме темно-зеленых зерен размерностью от крупноалевритовой до крупнопесчаной (0,05—1 мм). Это микростяжения с глобулярной структурой, формирующиеся в определенных условиях непосредственно на морском дне. В кристаллической решетке глауконита много железа, калия, меди и других элементов. Поэтому он является ценным минеральным сырьем. Глауконитовые пески, распространенные в апвеллинговых зонах на огромных пространствах, обычно занимают пологие участки континентального склона на глубинах от 200 до 500 м. Надо сказать, что в зонах подъема глубинных вод, помимо фосфоритов и глауконита, встречается много цеолитов, барит, натриевый монтмориллонит и т. д. Так, щеточки цеолитов вырастают на подложке из полевых шпатов или рогульках вулканического стекла. После захоронения под чехлом более молодых осадков, уплотнения и отжатия седиментационных вод возникает так называемая апвеллинговая формация. Для ее разреза характерен необычный набор осадочных образований: диатомиты и кремнистые глины, горючие сланцы, фосфориты, глауконитовые песчаники. Нередко вместе с ними попадаются своеобразные глины, сложенные игольчатыми минералами — палыгорскитом и сепиолитом. Из чистых разностей диатомитов получают кремнистое сырье. Палыгорскитовые глины применяются для приготовления буровых растворов и в других целях. Горючие сланцы служат источником энергии и углеводородов. В диатомитах и кремнистых глинах формации Монтеррей, широко распространенной на континентальной окраине Калифорнии, в последние годы открыты богатейшие скопления нефтяных углеводородов (месторождение Пойнт-Аргуэлло в бассейне Санта-Мария). Предполагают, что нефть возникла в породах формации, обогащенных органическим веществом сапропелевой природы.
Известно, что в океане существуют гигантские струйные течения, определяющие климат многих стран. Например, Гольфстрим и Ойясио распространяются на тысячи километров. Гольфстрим ежегодно перекачивает огромные массы теплой воды из тропических широт, главным образом из Мексиканского залива, в полярные области, отогревая побережья Скандинавии и Кольского полуострова, которые в противном случае были бы ледяными пустынями. Ойясио, напротив, гонит охлажденные в высоких широтах воды вдоль гряды Курильских и Японских островов на юг, делая климат наших восточных побережий более суровым. Не так давно в океане были обнаружены другие течения, не менее мощные. Их можно назвать реками в океане. Они текут близ поверхности дна над подножием континентальных склонов из высоких широт в низкие. Так как эти течения несут свои воды вдоль контура материков, они получили название контурных геострофических. Первыми свидетельствами существования этих придонных течений были фотографии участков дна на глубинах 3000—5000 м, сделанные в южных районах атлантической окраины США. На них отчетливо видны разнообразные знаки ряби на поверхности осадка. Знаки ряби — это система субпараллельных подводных валов и разделяющих их ложбин, которая напоминает ветровую рябь, возникающую на поверхности воды. Ее появление на дне связано с перераспределением частиц осадка под воздействием струй придонного течения. Знаки ряби известны в руслах рек, в эстуариях и дельтах, на приливно-отливных равнинах, на открытых участках шельфа, а также на абиссали — словом, везде, где перемещаются водные массы. В зависимости от высоты гребней подводных валов и расстояний между ними различаются мелкая рябь, мега-рябь и подводные дюны. Мегарябь, например, характеризуется превышением ее гребней над ложем ложбин не свыше 60 см и расстоянием между соседними волнами ряби до 12 м. Подобные же «волны», но меньшей высоты и длины, именуются просто знаками ряби. Наконец, крупные аккумулятивные тела на поверхности дна по ассоциации с прибрежными насыпными формами получили название подводных дюн. В глубоководных обстановках наблюдались дюны высотой 91 м. Нередко они выстраиваются цепочками с расстояниями между соседними валами 9,6 км. В пределах континентальных подножий были открыты целые поля ряби, сформировавшейся на поверхности осадка. Стало ясно, что речь идет о новом явлении, ведь на абиссали не действуют приливно-отливные течения, ветровые волны или океанская зыбь. Дальнейшие исследования подтвердили, что обнаружены следы процессов, имеющих глобальные масштабы и играющих первостепенную роль в «проветривании» (вентиляции) океанских глубин. Датчики скорости течений, установленные у дна, зафиксировали устойчивые перемещения водных масс над некоторыми его участками со скоростью до 50 см/с. Эти придонные течения устремлялись к экватору и, как выяснилось вскоре, даже пересекали его, проникая в другое полушарие. Сначала было открыто Арктическое контурное течение, формируемое холодными водами высоких широт северного полушария. Затем над континентальным подножием Южной Америки в Атлантическом океане обнаружили другое контурное течение, несущее к экватору холодные воды антарктического происхождения. Над окраиной Южной Бразилии оба течения встречаются и текут одно под другим в противоположных направлениях: арктические водные массы над антарктическими, более xолодными и тяжелыми. Таким образом, соленые тяжелые воды, охлажденные в высоких широтах, погружаются ко дну абиссальных котловин вдоль континентальных склонов полярных стран и текут над дном вдоль контура материков к экватору. Это довольно медленные течения, разбивающиеся на отдельные струи, меандрирующие в пространстве. Однако эту пространственную неустойчивость компенсирует их относительная стабильность во времени. Холодные воды богаты кислородом, поэтому контурные течения разносят его на огромных пространствах, предотвращая тем самым возникновение застойных явлений и сероводородного заражения осадков и придонных масс воды. Как и реки на суше, контурные течения перемещают не только огромные водные массы, но и значительное количество осадочного материала. При скорости 40—50 см/с вода способна волочить частицы довольно крупных размеров, вплоть до крупного песка. Собственно говоря, знаки ряби и являются прямым свидетельством перемещения осадков. Ведь волны ряби постоянно мигрируют, двигаясь по ходу течения с небольшой, но довольно постоянной скоростью. При этом зерна осадка время от времени взмучиваются и оседают в зависимости от ундуляции скорости отдельных водных струй у дна. Об эффективности этого процесса свидетельствует тот факт, что осадочный материал, подхваченный в высоких арктических широтах, в конечном итоге оказывается вблизи экватора и даже к югу от него. Более того, контурные течения, энергия которых в значительной степени расходуется по пути к экватору, на определенном отрезке уже не способны перемещать значительное количество частиц. Они оседают, формируя поля подводных дюн или гигантские насыпные валы. Одним из наиболее изученных образований такого рода является вал Блейк, отделяющий континентальное подножие Багамской погруженной платформы от внутренних частей абиссальной котловины в центральном секторе Атлантики. Протяженность другого вала, Ньюфаундлендского, превышает 500 км, а высота более 1 км. Мощность осадочной толщи, состоящей, как полагают, почти исключительно из контуритов, составляет 1,5 км. Это пятнистые однородные с плохо выраженной слоистостью отложения, имеющие преимущественно карбонатно-терригенный состав (известковые глины и мергели) и пелитово-алевритовую размерность (0,1 мм), в том числе раковинками фораминифер (более 20%) и скелетными остатками других организмов. Осадки обычно плохо отсортированы и несут следы сильного перемешивания илоедами. Скорости их накопления меняются от 1 до 12 см в 1000 лет. Казалось бы, каким образом можно установить, что осадки вала Блейк или какого-либо другого аналогичного по строению поднятия на дне океана являются контурптами? На деле существуют вполне надежные критерии. Ведь материал, идущий из приполярных широт, весьма своеобразен по составу. Это касается прежде всего глинистой фракции, в которой преобладают иллит и хлорит — минералы, легко разрушающиеся в гумидных условиях на суше. С континента в океан они сносятся в основном ледниками, т. е. в полярных широтах. В тропиках же эти минералы, особенно хлорит, становятся неустойчивыми. Поэтому, когда на участках континентального подножия в низких широтах появляются осадки с явно чужеродной для окружающей суши минеральной ассоциацией, можно заподозрить, что эти осадки отложены контурным геострофическим течением.
Апвеллинг и природные питомники в океане
С борта судна океан чаще всего кажется безжизненным. Иногда за несколько дней плавания удается увидеть лишь двух-трех дельфинов, пристроившихся к носу судна, либо редкий фонтанчик воды, выброшенный в воздух кашалотом, случается мелькнет акула. Однако это впечатление верно, если считать, что океан населяют только крупные животные. На самом деле в поверхностном слое океана обитают мельчайшие организмы — фитопланктон, питающий все остальные группы морских организмов. Для существования фитопланктона мало только солнечного света и растворенной в воде углекислоты, участвующих в фотосинтезе. Необходимы также биогенные элементы, и прежде всего фосфор, азот, кремний, кальций, из которых строятся органические и неорганические части организма. В большинстве районов океана фитопланктон развивается в условиях жесткого лимита нитратов, фосфатов и кремнезема. По мере выедания этих соединений цветение фитопланктона притормаживается. Однако известны такие зоны в океане, где фитопланктон не испытывает недостатка в биогенных соединениях. В результате величина биологической продукции в этих зонах необычайно высока — в тысячи и десятки тысяч раз превосходит среднюю для океана. Плотность популяций фито- и зоопланктона, ряда видов рыб, морских млекопитающих и птиц здесь достигает максимальных значений. Эти огромные по протяженности (несколько сот и даже тысячи километров), но относительно узкие области вдоль континентальных окраин — настоящие природные питомники. Подобная, на первый взгляд странная локализация жизни в океане определяется исключительно важным и интересным явлением, получившим наименование «апвеллинг» (устойчивый подъем глубинных вод). Дело в том, что в нижней части водной толщи океана скапливается и разлагается большая часть выведенных из биологического круговорота продуктов метаболизма морских организмов. Поэтому за многие миллионы лет здесь образовалась настоящая кладовая всех необходимых для жизни веществ. Отсутствие света на больших глубинах не дает возможности организмам их использовать. Однако там, где глубинные массы поднимаются вверх, сразу же наблюдается вспышка жизни, которая поддерживается почти непрерывным цветением фитопланктона. Наиболее интенсивные и устойчивые апвеллинги возникают в областях пассатной циркуляции. Пассаты, постоянно дующие в западном направлении ветры, отгоняют от побережья теплую поверхностную воду. На ее место из глубин поднимается холодная, богатая биогеиами вода. Пассаты дуют из пустынь на границе тропической и субтропической зон. Они во многом определяют структуру поверхностных течений. Возбуждаемые ими экваториальные течения выносят огромные массы разогретой воды из восточной периферии океана в западную. Отсюда теплые тропические течения движутся вдоль континентальных окраин на юг или на север. Грандиозный перепое теплых вод в средние и высокие широты компенсируется с другой стороны океана перетоком холодных вод из антарктических (или арктических) районов по направлению к тропикам. Эти течения, названные холодными пограничными, двигаясь вдоль восточных континентальных окраин в Тихом, Атлантическом и Индийском океанах, играют особую роль. Насыщенные кислородом, холодные воды особенно благоприятны для развития в зонах апвеллинга крупных популяций организмов. К мощным холодным пограничным течениям относятся Перуанское и Калифорнийское в Тихом океане, Канарнoe и Бенгельское в Атлантике, Восточно-Австралийское в Индийском океане. Вместе с холодными водами Перуанского и Бенгельского течений почти к самым тропикам из Антарктики поднимаются киты, пингвины, морские слоны и другие животные, а также птицы из высоких широт. Здесь они охотятся за многочисленными стаями рыб, ресурсы которых в апвеллинговых зонах поистине неисчерпаемы. Автору этих строк довелось участвовать в исследованиях, проводившихся в 1972 г. на судне «Профессор Месяцев» у побережья Перу совместно с перуанскими специалистами. Ночью вода здесь фосфоресцирует от несметного множества крошечных живых существ — диатомей. То тут, то там ее прочерчивают сотни зеленых полосок. Это проносятся стайки перуанского анчоуса — мелкой рыбешки, брюшные полости которой набиты светящимся фитопланктоном. Диатомей, строящие свои панцири из кремнезема, особенно бурно размножаются в холодной воде. Мелкие рачки и рыбешки не способны поглотить огромные количества этих существ. Отмирая, они опускаются на дно, где разлагаются, образуя черный осадок типа каши. Этот осадок содержит также целые или полуразрушенные створки панцирей диатомей, зерна кварца с «пустынным загаром» и агрегаты глинистых частиц. Значения рН в таком осадке обычно составляют 9—10, a Eh (окислительно-восстановительный потенциал) нередко опускается до —200 мВ. Это максимальные значения, определяемые в современных осадках. Они свидетельствуют о существовании на дне агрессивной щелочной среды, обусловленной отсутствием кислорода и сероводородным заражением не только самого осадка, но и придонного слоя воды. Созданию такой обстановки на шельфе и на прилегающих участках склона способствуют, видимо, катастрофические заморы, время от времени случающиеся в зонах подъема глубинных вод. В районе перуанского апвеллинга они связаны с отходом холодного течения от подводной окраины континента или с поворотом на юг теплого экваториального течения Эль-Ниньо. Вторжение разогретых до 30° вод, почти лишенных кислорода, приводит сначала к гибели диатомового фитопланктона, а затем и всего сообщества рыб, птиц и морских организмов, составляющих единую трофическую цепочку. Подобные процессы носят циклический характер: они происходят в среднем раз в 10—12 лет. Катастрофические заморы отмечались у побережья Юго-Западной Африки, т. е. в зоне действия Бенгельского течения, у Западного побережья полуострова Индостан, где является сезонным и связан с муссонами. Скопление на дне огромного количества неразложившихся органических остатков создает неблагоприятные условия для развития бентоса, представленного здесь лишь немногими группами микроорганизмов, например сульфатредуцирующими бактериями. Концентрации органического вещества в переводе на Сорг достигают В осадках апвеллинговых зон 10—16% сухого веса. Это вещество присутствует в форме сложных полигетероконденсатов, содержащих фрагменты белковой, углеводной и нуклеиновой природы. Много и липидных компонентов. Вместе с органическими остатками в осадки попадает большое количество фосфора, серы, меди, железа, ванадия, урана и других биофильных элементов. Одни из них входили в состав прижизненных клеточных структур, другие адсорбировались при прохождении органических остатков сквозь толщу воды. В условиях высоких рН и отрицательных Eh многие устойчивые образования, например кремнистые скорлупки диатомей, распадаются, а некоторые элементы становятся подвижными. Уходя из зон распространения углеродистых черных илов, они концентрируются на границах их ареалов. Фосфор выпадает главным образом в виде карбонатапатита, замещая костные остатки животных, либо образует фосфатные «рубашки» вокруг зерен терригенных минералов: кварца, полевых шпатов и др. Промысловые тралы, использовавшиеся в экспедиции на «Профессоре Месяцеве» для изучения донных рыб и других бентосных животных, нередко поднимали со дна целые фосфоритовые плиты вместе с Другими коренными породами. Области древних апвеллингов являются в настоящее время богатейшими фосфоритоносными провинциями. Таковы, например, Марокканский и Сенегальский бассейны, а также бассейн Тарфая-Аюн на континентальной окраине Северо-Западной Африки. С зонами апвеллингов связаны уникальные парагенезы осадков, не встречающиеся в других частях ложа океана. Так, в верхней половине континентального склона многие участки покрыты глауконитовым песком. Глауконит — минерал глинистой природы, встречающийся, однако, не в виде тонких чешуек, как большинство глинистых минералов, а в форме темно-зеленых зерен размерностью от крупноалевритовой до крупнопесчаной (0,05—1 мм). Это микростяжения с глобулярной структурой, формирующиеся в определенных условиях непосредственно на морском дне. В кристаллической решетке глауконита много железа, калия, меди и других элементов. Поэтому он является ценным минеральным сырьем. Глауконитовые пески, распространенные в апвеллинговых зонах на огромных пространствах, обычно занимают пологие участки континентального склона на глубинах от 200 до 500 м. Надо сказать, что в зонах подъема глубинных вод, помимо фосфоритов и глауконита, встречается много цеолитов, барит, натриевый монтмориллонит и т. д. Так, щеточки цеолитов вырастают на подложке из полевых шпатов или рогульках вулканического стекла. После захоронения под чехлом более молодых осадков, уплотнения и отжатия седиментационных вод возникает так называемая апвеллинговая формация. Для ее разреза характерен необычный набор осадочных образований: диатомиты и кремнистые глины, горючие сланцы, фосфориты, глауконитовые песчаники. Нередко вместе с ними попадаются своеобразные глины, сложенные игольчатыми минералами — палыгорскитом и сепиолитом. Из чистых разностей диатомитов получают кремнистое сырье. Палыгорскитовые глины применяются для приготовления буровых растворов и в других целях. Горючие сланцы служат источником энергии и углеводородов. В диатомитах и кремнистых глинах формации Монтеррей, широко распространенной на континентальной окраине Калифорнии, в последние годы открыты богатейшие скопления нефтяных углеводородов (месторождение Пойнт-Аргуэлло в бассейне Санта-Мария). Предполагают, что нефть возникла в породах формации, обогащенных органическим веществом сапропелевой природы.